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Abstract
In introducing second quantization for fermions, Jordan and Wigner (1927,
1928) observed that the algebra of a single pair of fermion creation and
annihilation operators in quantum mechanics is closely related to the algebra
of quaternions H. For the first time, here we exploit this fact to study nonlinear
Bogolyubov–Valatin transformations (canonical transformations for fermions)
for a single fermionic mode. By means of these transformations, a class of
fermionic Hamiltonians in an external field is related to the standard Fermi
oscillator.

PACS numbers: 05.30.Fk, 03.65.Fd, 02.10.De

Unitary transformations play a prominent role in quantum mechanics. Like canonical
transformations in classical mechanics, unitary transformations of quantum dynamical
degrees of freedom often simplify the dynamical equations, or allow us to introduce
sensible approximation schemes. Such methods have wide-ranging applications, from the
study of simple systems to many-body problems in solid-state or nuclear physics and
quantum chemistry, up to the infinite-dimensional systems of quantum field theory [1–4].
Linear (unitary) canonical transformations (i.e., transformations preserving the canonical
anticommutation relations (CAR)) for fermions have been introduced by Bogolyubov and
Valatin (for two fermionic modes) in connection with the study of the mechanism of
superconductivity [5–9]. These (linear) Bogolyubov–Valatin transformations have been
extended, initially by Bogolyubov and his collaborators [10, 11], [12, appendix II, p 123]
([13, p 116], [14, p 679]), to involve n fermionic modes (so-called generalized linear
Bogolyubov–Valatin transformations, see, e.g., [15, Part III, p 247] ([16, p 341])). Such
linear canonical transformations are important from a physical as well as from a mathematical
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point of view. Mathematically, they allow us to relate quite arbitrary Hamiltonians, quadratic
in the fermion creation and annihilation operators, to collections of Fermi oscillators whose
mathematics is very well understood. From a physical point of view, canonical transformations
implement the concept of quasiparticles in terms of which the physical processes taking
place can be described and understood in an effective and transparent manner. To apply the
powerful tool of canonical transformations to the physically interesting class of non-quadratic
Hamiltonians, however, requires us to go beyond linear Bogolyubov–Valatin transformations.
Certain aspects of nonlinear Bogolyubov–Valatin transformations have received some attention
over time [17–36]. (We disregard here work done within the framework of the coupled-cluster
method (CCM) [4] which is nonunitary.) However, a systematic analytic study of general
(nonlinear) Bogolyubov–Valatin transformations has not been undertaken so far. In the present
paper, as a first step towards this goal we are going to investigate the prototypical case of a
single fermionic mode.

Let us consider a pair of fermion creation and annihilation operators â+, â. Here, we
regard the creation operator â+ as the Hermitian conjugate of the annihilation operator â:
â+ = â† (we will use the latter notation throughout). They obey the CAR

{â†, â} = â†â + ââ† = 1, (1)

(â†)2 = â2 = 0. (2)

It is now instructive to consider the following pair of anti-Hermitian operators:

â[1] = −â[1]† = i(â + â†), (3)

â[2] = −â[2]† = â − â†. (4)

These two operators obey the equation (p, q = 1, 2)

{â[p], â[q]} = −2δpq . (5)

Consequently, they generate the (real) Clifford algebra C(0, 2) which is isomorphic to the
algebra of quaternions H (cf, e.g., [37, chapter 15, p 123], [38, chapter 16, p 205]). We can
define the three quaternionic units i, j, k by the equations

i = â[1] = i(â + â†), (6)

j = â[2] = â − â†, (7)

k = â[3] = â[1]â[2] = i(â†â − ââ†). (8)

Quite generally, these definitions entail that any pair of fermionic creation and annihilation
operators â†, â induces a (bi-)quaternionic structure into any consideration and model they
are a part of. And in turn, any quaternionic structure can be interpreted in terms of
fermionic creation and annihilation operators. The link between the algebra of quaternions
H and fermion creation and annihilation operators has been mentioned for the first time by
Jordan and Wigner in introducing second quantization for fermions [39, p 474], [40, p 635]
([41, p 45], [42, p 113]). However, it seems to not have found its way into the work of later
authors. (The only further mention of this fact in the literature we have been able to find is
in [43].)

Let us now start by writing down an ansatz for the most general Bogolyubov–Valatin
transformation for a single fermionic mode. In view of equations (1) and (2), the new pair of
fermion annihilation and creation operators b̂, b̂† reads (here we assume the coefficients to be
complex numbers: λ(k;l) ∈ C, k, l = 0, 1; {λ} = {λ(0;0), λ(0;1), λ(1;0), λ(1;1)})

b̂ = B({λ}; â) = λ(0;0) + λ(0;1)â + λ(1;0)â† + λ(1;1)â†â, (9)
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b̂† = B({λ}; â)† = λ(0;0) + λ(0;1)â† + λ(1;0)â + λ(1;1)â†â. (10)

From equation (1) applied to b̂, b̂† follows:

2|λ(0;0)|2 + |λ(1;0)|2 + |λ(0;1)|2 = 1 (11)

and from equation (2) follows:

(λ(0;0))2 + λ(1;0)λ(0;1) = 0, (12)

while both equations (1) and (2) also yield

2λ(0;0) + λ(1;1) = 0 (13)

([31, section 2.6, p 32, equation (2.91)]). Using equation (12), equation (11) can be transformed
to read

|λ(1;0)| + |λ(0;1)| = 1. (14)

(Take absolute values on both sides of the modified equation (12): (λ(0;0))2 = −λ(1;0)λ(0;1),
eliminate |λ(0;0)|2 from equation (11) and take the square root.) For comparison, let us have a
look at the class of generalized linear Bogolyubov–Valatin transformations (for one mode!):
λ(0;0) = λ(1;1) = 0. Then, equation (12) requires that λ(1;0)λ(0;1) = 0. This condition allows
two solutions:

λ(1;0) = 0, |λ(0;1)| = 1, (15)

λ(0;1) = 0, |λ(1;0)| = 1. (16)

It has been found that generalized linear Bogolyubov–Valatin transformations (for n modes)
are equivalent to the group of O(2n, R) transformations which is in accord (for n = 1)
with equations (15) and (16). (This group is reduced to SO(2n, R) if one only allows
transformations continuously connected to the identity map—then in our case only equation
(15) applies [44–49], [23, 50], [51, section 3.2, p 16], [1, section 2.2, p 38], [52, section 9.1,
p 111], [53, section 9.1, p 127]; if one does not assume that â and â+ are Hermitian
conjugates of each other, the corresponding groups are O(2n, C) and SO(2n, C), respectively
[47, 48, 54, 55], [1, section 2.1, p 34], [56, 57].)

The Bogolyubov–Valatin transformation (9) can be inverted. We can write

â = B({ν}; b̂) = ν(0;0) + ν(0;1)b̂ + ν(1;0)b̂† + ν(1;1)b̂†b̂. (17)

Inserting equation (9) into equation (17), one obtains a system of linear equations in {ν} whose
(unique) solution reads

ν(0;0) = λ(0;0)λ(1;0) − λ(0;0)λ(0;1), (18)

ν(0;1) = λ(0;1), (19)

ν(1;0) = λ(1;0), (20)

ν(1;1) = −2ν(0;0). (21)

One can convince oneself by explicit calculation that {ν} given by equations (18)–(21) obey the
analogues of equations (11) and (12) if {λ} obey the latter equations. Furthermore, the nonlinear
Bogolyubov–Valatin transformations (9) form a group GBV. After the above considerations, it
remains to check that B({ν}; â) = B({µ}; B({λ}; â)) belongs to GBV if B({λ}; â) and B({µ}; â)

belong to GBV. One can explicitly check that {ν} obey the analogues of equations (11) and
(12) if {λ}, {µ} obey equations (11) and (12), or their analogues, respectively.

To further study the Bogolyubov–Valatin group GBV, it now turns out to be useful
to consider the linear vector space V generated by the operators â, â† (V is the space of
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linear operators in Fock space). It is four dimensional and is spanned by the operator basis
aT = (1, â, â†, â†â). However, taking into account the connection already discussed between
the operators â, â† and quaternions, it turns out to be advantageous to pursue the consideration
of this linear space in terms of the operator basis (cf equations (6)–(8)) aT = (1, â[1], â[2], â[3]).
The Bogolyubov–Valatin transformation (9) can be understood as a base transformation in the
linear space V . We can write (bT = (1, b̂[1], b̂[2], b̂[3]))

b = A({λ})a, (22)

where the 4 × 4 matrix A({λ}) is a block diagonal matrix A = diag(1, A) and A = A({λ}) is
the real 3 × 3 matrix

A({λ}) =

 Re κ(0;1) Re κ(1;0) Re κ(1;1)

Im κ(0;1) Im κ(1;0) Im κ(1;1)

Im(κ(1;0) κ(1;1)) Im(κ(1;1) κ(0;1)) Im(κ(0;1) κ(1;0))


 (23)

with (taking into account equations (11)–(13)) unit determinant (det A = 1) and inverse
A({λ})−1 = A({λ})T . Here, we have applied the notation

κ(0;1) = λ(0;1) + λ(1;0), (24)

κ(1;0) = i(λ(0;1) − λ(1;0)), (25)

κ(1;1) = λ(1;1) = −2λ(0;0) = −2κ(0;0). (26)

In view of the above considerations, the Bogolyubov–Valatin group GBV is equivalent to the
group SO(3). Given the link between creation and annihilation operators and the algebra of
quaternions H discussed further above, this does not come as a big surprise. In accordance with
equations (6)–(8), the new pair of operators b̂, b̂† defines a transformed system of quaternionic
units i′, j′, k′ by writing

i′ = b̂[1] = i(b̂ + b̂†) = Re κ(0;1)i + Re κ(1;0)j + Re κ(1;1)k, (27)

j′ = b̂[2] = b̂ − b̂† = Im κ(0;1)i + Im κ(1;0)j + Im κ(1;1)k, (28)

k′ = b̂[3] = b̂[1]b̂[2]. (29)

In terms of the new parameters {κ} (equations (24)–(26)), equations (11) and (12) read

|κ(0;1)|2 + |κ(1;0)|2 + |κ(1;1)|2 = 2, (30)

(κ(0;1))2 + (κ(1;0))2 + (κ(1;1))2 = 0. (31)

Let us now further analyse these equations. Separating them into real and imaginary parts and
introducing the three-dimensional (complex) vector (e′)T = (κ(0;1), κ(1;0), κ(1;1)), these (three
real) equations can compactly be written as

(e′)T e′ = 0, |e′|2 = 2. (32)

e′ is an isotropic vector (cf, e.g., [58, section 6.3, p 113], and [59] for some more detailed
and pedagogical exposition). In a way, it appears to be an interesting feature that within
the framework of general (nonlinear) Bogolyubov–Valatin transformations for a single
pair of fermion creation and annihilation operators, spinors make their appearance (via
isotropic vectors, cf, e.g., [59]). The properties of these spinors are related to canonical
(Bogolyubov–Valatin) transformations. Introducing two three-dimensional (real) vectors
e′

1 = Re(e′), e′
2 = Im(e′) (transposed, they agree with the first two rows of the matrix

(23)), one can write equations (32) as

|e′
1|2 = |e′

2|2 = 1, (e′
1)

T e′
2 = 0. (33)
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These equations define the vectors e′
1, e′

2 as a pair of orthonormal vectors which can be
supplemented by the vector e′

3 = e′
1 × e′

2 to form an orthonormal vector triple in R3. It
is worth mentioning here that the vector (e′

3)
T coincides with the third row of the matrix

(23). Consequently, the orthogonality condition(s) for the matrix (23) are equivalent to the
conditions for the Bogolyubov–Valatin transformation to be canonical (equations (30), (31)
or (11), (12)). This is a generalization of an insight obtained for linear Bogolyubov–Valatin
transformation (see [44, 47, 49]) to the general (nonlinear) case.

The canonical (Bogolyubov–Valatin) transformation (9) can be implemented by means
of an unitary transformation U({λ}; â):

b̂ = B({λ}; â) = U({λ}; â)â U ({λ}; â)†. (34)

The analogue of equation (34)

b̂[1] = U({λ}; â)â[1] U ({λ}; â)† (35)

has a remarkable interpretation in terms of quaternions discussed further above (an analogous
comment applies to â[2] and â[3]). Equations (27) and (35) are just concrete realizations of
the theory of rotations in the language of quaternions first elaborated by Cayley and Hamilton
(cf, e.g., [58, section 12.8, p 215], equation (9), [60, section 4.5, p 201]). Equation (27)
represents a (SO(3)) rotation of the vector (1, 0, 0) in the three-dimensional space spanned
by the quaternionic units i, j, k, while equation (35) stands for the corresponding (SU(2))

transformation of the quaternion i (= â[1]) by quaternionic multiplication. The unitary operator
U({λ}; â) can be understood as a unit quaternion given by (−π < φ � π, n1, n2, n3 ∈ R,

n2 = 1)

U({λ}; â) = cos
φ

2
+ sin

φ

2
(n1i + n2j + n3k) (36)

= exp(φ(n1i + n2j + n3k)/2). (37)

The coefficients {λ} are given in terms of the parameters φ, n1, n2, n3 by the equations

λ(0;1) =
(

cos
φ

2
− i n3 sin

φ

2

)2

, (38)

λ(1;0) = (n1 + i n2)
2 sin2 φ

2
, (39)

λ(1;1) = −2λ(0;0) = 2i

(
cos

φ

2
− i n3 sin

φ

2

)
(n1 + i n2) sin

φ

2
. (40)

To obtain these relations, insert equation (36) into equation (34) and compare the rhs
with equation (9). From the representation (37), one sees immediately that the operators
i = â[1], j = â[2], k = â[3] (cf equations (6)–(8)) are generators of the group SU(2) and they
obey the Lie algebra of SO(3), SU(2). This has been observed earlier (in a more general
context) in [61] (also see [19]). Related observations can be found in [62, appendix A.1, p 919],
[63] and [64, p 907], equation (6.2). One can convince oneself that for linear Bogolyubov–
Valatin transformations of type (15), equation (37) agrees (sometimes up to some elementary
complex phase factor) with equation (7) in [65], with equation (5.1) in [49], with equation (3.6)
in [55], with equation (2.32a), p 40, section 2.2, in [1] and with equation (3.10) in [66]
(reduced to the one-mode case; incidentally, there is disagreement with [67, p 205], below of
equation (11)).

The vacuum state |0〉 defined by â|0〉 = 0 transforms under (general, i.e., SO(3))
Bogolyubov–Valatin transformations according to the law

|0〉{λ} = U({λ}; â)|0〉, b̂|0〉{λ} = 0. (41)
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Associating |0〉 with a vector in a two-dimensional (complex) Hilbert space and U({λ}; â)

with a 2 × 2 matrix operating in it (cf [39, pp 474–5], [40, p 634] ([41, p 44], [42, p 112])),
one sees that this vector transforms as a spinor (with a corresponding element of SU(2))
under Bogolyubov–Valatin transformations. The state |0〉{λ} is a spin (SU(2)) coherent state
[23] (with respect to the â, â† operators, cf, e.g., [68, section I.4, p 25], [52, section 4.3,
p 59], [53, section 4.3, p 72], [64, section III.D.1, p 884 and section VI.A.1, p 907]).
However, these fermion coherent states are different (cf the comments in [68, section I.5, p 55]
and in [64, section VI.D, p 919]) from the Grassmann (fermion) coherent states (see, e.g.,
[68, section I.5, p 48]).

Finally, let us have a look at the standard Fermi oscillator given by the Hamiltonian
H = â†â − 1

2 . Applying the Bogolyubov–Valatin transformation (9), one can see that it is
unitarily equivalent to the following class of fermionic oscillators in an external field [17–19,
22, 26], [31, section 2.6, p 29] (below, we have taken into account equations (11)–(14)):

H ′ = b̂†b̂ − 1
2 = U({λ}; â)H U ({λ}; â)†

= (|λ(0;1)| − |λ(1;0)|)(â†â − 1
2

)
+ (λ(0;0)λ(0;1) − λ(0;0)λ(1;0))â

+ (λ(0;0)λ(0;1) − λ(0;0)λ(1;0))â†. (42)

As a special case, equation (42) contains for |λ(0;1)| = |λ(1;0)| also Hamiltonians that are
linear in the creation and annihilation operators (such Hamiltonians have been studied in
[22, section 4, p 477]). Equation (42) demonstrates that any (Hermitian) Hamiltonian H0

(0 � α ∈ R, β ∈ C)

H0 = α
(
â†â − 1

2

)
+ βâ + βâ† (43)

can be written and understood in terms of transformed creation and annihilation operators
b̂†, b̂ as

H0 =
√

α2 + 4|β|2(b̂†b̂ − 1
2

)
. (44)

In view of the above considerations, its dynamical (spectrum generating) algebra is so(3) ∼
su(2).

The present paper paves the way for the study of (nonlinear) Bogolyubov–Valatin
transformations in full generality for any finite number of fermionic modes. This is done
by introducing a methodological framework which can be generalized (stepwise) to more than
just one mode. For several—say n—fermionic modes, the formalism can, for example, be
expected to allow equivalences of wide classes of non-quadratic fermionic Hamiltonians to
collections of n Fermi oscillators to be derived. This will be of considerable interest for a
wide range of physically relevant models. However, beyond its plain methodological value,
the present study of nonlinear Bogolyubov–Valatin transformations for just one fermionic
mode provides us even with some surprising insight. Note that the nonlinear Bogolyubov–
Valatin transformation (9) defines fermionic operators as a sum of Fermi-even and Fermi-odd
terms. This is reminiscent of a supersymmetric transformation (cf in this respect [36]). In this
context, remember that linear Bogolyubov–Valatin transformations—in contrast to (bosonic)
linear Bogolyubov transformations—do not allow any linear shifts by complex numbers to
be performed (see, e.g., [69, appendix IV, section 1(a), 1st edn, p 280, 2nd edn, p 292]
([70, p 328]), also see [1, section 2.4, p 40], equation (2.33b)).

The future generalization of the present work to several fermionic modes can alternatively
also be understood as generalizing the complex coefficients {λ} in equation (9) to operator-
valued functions for which the present analysis has to be repeated in an appropriately modified
manner. Closely related to this direction of future research is to consider the coefficients {λ}
as elements of an appropriately chosen Grassmann algebra. However, the coefficients {λ} can
not only be imagined to be functions of fermionic operators but also to be functions of bosonic
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creation and annihilation operators. Such constructions are met, for example, in the study
of so-called quantized Bogolyubov–Valatin transformations (introduced in [71]) and, more
generally, in the study of boson–fermion interactions (see, e.g., [2, chapter 5, p 108]).

References

[1] Blaizot J-P and Ripka G 1986 Quantum Theory of Finite Systems (Cambridge, MA: MIT Press)
[2] Wagner M 1986 Unitary Transformations in Solid State Physics (Mod. Probl. Cond. Matter Sci. vol 15)

(Amsterdam: North-Holland)
[3] Ring P and Schuck P 1980 The Nuclear Many-Body Problem (Texts Monogr. Phys.) (Berlin: Springer)
[4] Bishop R F 1991 Theor. Chim. Acta 80 95
[5] Bogolyubov N N 1958 Zh. Eksp. Teor. Fiz. 34 58

Bogolyubov N N 1958 Sov. Phys.—JETP 7 41 (Engl. Transl. reprinted in [8], p 399)
[6] Bogoljubov N N 1958 Nuovo Cimento Series 10 7 794
[7] Valatin J 1958 Nuovo Cimento Series 10 7 843 (reprinted in [8], p 405 and [9], p 118)
[8] Pines D (ed) The Many-Body Problem—A Lecture Note and Reprint Volume (Front. Phys. vol 6) (New York:

Benjamin)
[9] Bogoliubov N N (ed) The Theory of Superconductivity (Int. Sci. Rev. Ser. vol 4) (New York: Gordon and Breach)

[10] Bogolyubov N N 1958 Dokl. Akad. Nauk SSSR 119 244
Bogoliubov N N 1958 Sov. Phys.—Dokl. 3 292 (Engl. Transl.)

[11] Bogolyubov N N and Solov’ev V G 1959 Dokl. Akad. Nauk SSSR 124 1011
Bogolyubov N N and Solov’ev V G 1959 Sov. Phys.—Dokl. 4 143 (Engl. Transl.)

[12] Bogolyubov N N, Tolmachev V V and Shirkov D V 1958 Novyı̆ Metod v Teorii Sverkhprovodimosti (Moscow:
Izdatel’tsvo Akademii Nauk SSSR) (in Russian) (Engl. Transl.: 1. [13]; 2. (shortened version) [14])

[13] Bogoliubov N N, Tolmachev V V and Shirkov D V 1959 A New Method in the Theory of Superconductivity
(New York: Consultants Bureau; London: Chapman and Hall)

[14] Bogolyubov N N, Tolmachev V V and Shirkov D V 1958 Fortschr. Phys. 6 605
[15] Bogolyubov N N and Bogolyubov N N Jr 1984 Vvedenie v Kvantovuyu Statisticheskuyu Mekhaniku (Moscow:

Nauka) (in Russian) (Engl. Transl.: [16])
[16] Bogolubov N N and Bogolubov N N Jr 1994 An Introduction to Quantum Statistical Mechanics (Switzerland:

Gordon and Breach)
[17] ter Haar D and Perry W E 1962 Phys. Lett. 1 145
[18] Kuzemsky A L and Pawlikowski A 1972 Rep. Math. Phys. 3 201
[19] Fukutome H, Yamamura M and Nishiyama S 1977 Prog. Theor. Phys. 57 1554
[20] Fukutome H 1977 Prog. Theor. Phys. 58 1692
[21] Fukutome H 1978 Prog. Theor. Phys. 60 1624
[22] Colpa J H P 1979 J. Phys. A: Math. Gen. 12 469
[23] Fukutome H 1981 Prog. Theor. Phys. 65 809
[24] Nishiyama S 1982 Prog. Theor. Phys. 68 680
[25] Nishiyama S 1983 Prog. Theor. Phys. 69 1811
[26] Zaslavskiı̆ O B and Tsukernik V M 1983 Fiz. Nisk. Temp. (Khar’kov) 9 65

Zaslavskiı̆ O B and Tsukernik V M 1983 Sov. J. Low Temp. Phys. 9 33 (Engl. Transl.)
[27] Fukutome H and Nishiyama S 1984 Prog. Theor. Phys. 72 239
[28] Gunn J M F and Long M W 1988 J. Phys. C: Solid State Phys. 21 4567
[29] Suzuki K 1988 Prog. Theor. Phys. 79 330

Suzuki K 1988 Prog. Theor. Phys. 79 1249 (erratum)
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